
Inter IIT Tech-Meet 10.0

DRDO’S UAV-Guided UGV

Navigation Challenge

Project Documentation

Team Number 10

22 March 2022

Contents

1 Installation and Setup Instructions 3

1.1 Pre-Installation Assumptions . 3

1.2 Installing Dependencies . 4

1.3 Running the Simulation . 5

1.4 Version Information for Dependencies . 5

1.5 Changes in provided Model Files . 6

1.6 Potential Build and Runtime Issues . 6

2 Overall Approach and Algorithm Description 7

2.1 Autonomous Takeoff . 7

2.2 Road Segmentation . 7

2.2.1 Average slope computation . 7

2.2.2 Inclusion of time based filters . 8

2.2.3 Estimating the previous depth prevZ reliably 8

2.2.4 Bringing it all together . 9

2.3 Mean Path Detection . 10

2.3.1 Condition when road occupies major part of Image 10

2.3.2 Next Waypoint Calculation using MinAreaRect 11

2.3.3 Next Waypoint Calculation using PCA . 11

2.4 Prius Detector . 12

2.5 UGV Controller . 13

3 Software Architecture Description 16

3.1 rqt graph . 16

1

3.2 Parameter Files . 16

3.2.1 segmentation . 17

3.2.2 prius detector . 17

3.3 Nodes . 17

3.3.1 road seg node . 17

3.3.2 mapping fsm node . 17

3.3.3 prius detector . 18

3.3.4 controls 18577 1647966555634 . 18

3.3.5 path tracking 18610 1647966558346 . 18

3.3.6 waypoint publisher . 19

4 References 20

2

1 Installation and Setup Instructions

1.1 Pre-Installation Assumptions

The following instructions assume that the system has a working installation of Ubuntu 18.04

with ROS Melodic and Gazebo 9. Further, the Ardupilot Stack and the ardupilot gazebo have

also been properly installed. We will be using the catkin build system instead of catkin make.

The following workspace structure was maintained during development:

Instructions followed for installing Ardupilot Stack and ardupilot gazebo plugins are reproduced

below for verification:

$ cd $HOME

$ git clone https://github.com/Ardupilot/ardupilot

$ cd ardupilot

$ git submodule update --init --recursive

Next, we shift to the recommended firmware branch - 3.6 and build it. Within the ardupilot

directory,

$ source ~/.bashrc

$ git checkout Copter-3.6

$ git submodule sync

$ git submodule update --init --recursive

$./waf configure --board px4-v3

$./waf copter

Next, we install the ardupilot gazebo package as follows:

$ git clone https://github.com/khancyr/ardupilot_gazebo.git

$ cd ardupilot_gazebo

$ git checkout dev

$ mkdir build

$ cd build

$ cmake ..

$ make -j4

$ sudo make install

If mavros is not installed, it can be installed as follows:

$ sudo apt-get install ros-melodic-mavros

$ ros-melodic-mavros-extras

3

$ cd /opt/ros/melodic/lib/mavros

$./install_geographiclib_datasets.sh

1.2 Installing Dependencies

First, install the following additional system dependencies:

$ sudo apt-get install python-wstool python-catkin-tools \

$ ros-melodic-cmake-modules protobuf-compiler autoconf \

$ libboost-dev libeigen3-dev libgoogle-glog-dev

Next, we create a new catkin workspace, if not already done:

$ mkdir -p ~/drdo22_ws/src

$ cd ~/drdo22_ws

$ catkin init

$ catkin config --extend /opt/ros/melodic

$ catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release

Note: We installed the Ardupilot stack and plugins in home, however this is not necessary and

will not affect the working of the submission (provided the paths of the installation are properly

set where required) since these are not built with catkin.

Place the provided package folder (i.e. the submission) into the src folder and build after changing

the appropriate paths in the launch files for ardupilot and ardupilot gazebo.

$ cd ~/drdo22_ws

$ cd src

$ git clone <repo_link>

The submission depends on the following ROS packages. Use the following command to ensure

all of them are installed. Most of these will already be installed, however all packages have been

mentioned here just to be sure.

$ sudo apt-get install ros-melodic-std-msgs ros-melodic-std-srvs \

ros-melodic-geometry-msgs ros-melodic-mavros-msgs ros-melodic-nav-msgs \

ros-melodic-message-generation ros-melodic-message-runtime \

ros-melodic-tf2-ros ros-melodic-cv-bridge ros-melodic-tf \

ros-melodic-tf-conversions ros-melodic-eigen-conversions \

4

ros-melodic-sensor-msgs ros-melodic-image-transport \

ros-melodic-cv-bridge ros-melodic-visualization-msgs \

ros-melodic-pcl-ros ros-melodic-pcl-conversions \

ros-melodic-interactive-markers ros-melodic-trajectory-msgs

Once all dependencies have been satisifed, build the workspace:

cd ~/drdo22_ws/src

catkin build

1.3 Running the Simulation

Please refer to the README for the same.

1.4 Version Information for Dependencies

ROS Version: melodic 1.14.10

Gazebo Version: 9.16.0

Pip Version : 20.3.4

Pip3 Version : 21.0.1

Kernel Version: 5.4.0-67-generic

Commit IDs for git installed dependencies: ArduPilot : Copter-3.6

All other repositories use the main or master branch.

Versions for additional system installed dependencies:

python-wstool : 0.1.17-1

python-catkin-tools : 0.6.1-1

ros-melodic-cmake-modules : 0.4.2-0bionic.20201015.021712

protobuf-compiler : 3.0.0-9.1ubuntu1

autoconf : 2.69-11

libboost-dev:amd64 : 1.65.1.0ubuntu1

libeigen3-dev : 3.3.4-4

libgoogle-glog-dev : 0.3.5-1

The following dependency versions are the default versions.

Version for ROS binary installed dependencies:

5

ros-melodic-mavros-msgs : 0.5.12-0bionic.20201017.034204

ros-melodic-std-srvs : 1.11.2-0bionic.20201017.034224

ros-melodic-geometry-msgs : 1.12.8-1bionic.20210112.173042

ros-melodic-nav-msgs : 1.12.8-1bionic.20210112.173737

ros-melodic-message-generation : 0.4.1-1bionic.20201017.033327

ros-melodic-message-runtime : 0.4.12-0bionic.20201017.033232

ros-melodic-tf2-ros : 0.6.5-0bionic.20210112.183245

ros-melodic-cv-bridge : 1.13.0-0bionic.20210112.181516

ros-melodic-tf : 1.12.1-1bionic.20210112.183814

ros-melodic-tf-conversions : 1.12.1-1bionic.20210112.190235

ros-melodic-eigen-conversions : 1.12.1-1bionic.20210112.180039

ros-melodic-sensor-msgs : 1.12.8-1bionic.20210112.173755

ros-melodic-image-transport : 1.11.13-0bionic.20210112.181401

ros-melodic-visualization-msgs : 1.12.8-1bionic.20210112.173714

ros-melodic-pcl-ros : 1.7.1-1bionic.20210112.185053

ros-melodic-pcl-conversions : 1.7.1-1bionic.20210112.181845

ros-melodic-interactive-markers : 1.11.5-1bionic.20210112.190840

ros-melodic-trajectory-msgs : 1.12.8-1bionic.20210112.180155

1.5 Changes in provided Model Files

Following changes in the file gimbal small 2d/model.sdf:

• line 155: update rate tag of depth camera sensor changed from 10.0 to 20.0

• line 149: clip far tag changed from 10 to 20 : As the maximum height above the road

plane that we can fly our drone with is 20m.

• line 164: pointCloudCutoffMax tag under depth camera sensor changed from 10 to 20

: same reason as above

1.6 Potential Build and Runtime Issues

• No downward camera topic Try deleting gimbal small 2d model in ∼/.gazebo/models

• On running road seg node of the segmentation package, on the first run it gives the error -

segmentation fault (core dumped). The possible reason might be that on starting there is

no image (or null image) and its pointer is accessed somewhere without check. But once the

drone attains certain height and properly detects the image, on second run road seg node

works fine.

6

2 Overall Approach and Algorithm Description

2.1 Autonomous Takeoff

We have utilized QGC as our mission planner to arm the iris quadrotor. In the world files given,

the quadrotor is spawned on top of the Prius which itself is on a slanted road. Since the drone

was found to be sliding over the Prius rather than being static, the in-built safety check for the

gyroscope was failing, and the drone would refuse to arm. For takeoff, we can either place the

drone on the ground some distance away from the Prius and then further operate or alternatively

we can manually disable all the safety checks except GPS lock in the mission planner. Either of

these two solutions successfully arms the drone.

We arm the drone using the command shown below

$ sim_vehicle.py -v ArduCopter -f gazebo-iris

2.2 Road Segmentation

We primarily use the pointcloud generated by the RGBD camera for road pixel segmentation.

We first use the PCL library to find the three most prominent planes in the pointcloud using

the RANSAC algorithm. The next task will be to identify which of these planes is the road.

For this we use some heuristics and criteria which will be detailed below.

2.2.1 Average slope computation

We expect that the road will be a more even and horizontal surface. To ease the computational

load of performing this operation, we adopt the following method. From the very large number

of points in every plane, we randomly select a fraction f of the points. We compute the quantity
|p2z − p1z|√

(p2x − p1x)2 + (p2y − p1y)2
for every two points p1 and p2 from the selected points. This value

is now averaged over every two pairs from the selected points and this computed average will be

called the Z-value from now on. If the road is reasonably flat, then the numerator is expected

to be small. Since the points are taken randomly, we get a set that can reasonably be expected

to cover all parts of the plane.

We compute this quantity for all the three planes and sort them based on the same.

7

2.2.2 Inclusion of time based filters

A major challenge in the map is the similarity in some places of the road to the surrounding

mountains. An example would be the RGB image:

Figure (a)

Figure (b)

Figures (a), (b) : Three major planes shown as described in algorithm. Red plane is the final

segmented road.

In such a case, the Z-value for these two planes will be very similar and not enough to reliably

catch the road correctly. Thus we introduced time-based filtering to solve this problem. The

idea is that the depth of the road plane will not change by a large amount in one timestep. To

apply this method we need to know the average depth of the planes and a stable and reliable

estimate of the previous depth values.

2.2.3 Estimating the previous depth prevZ reliably

We follow a very similar method for the computation of the Z-value. The only difference here

is that the average is taken of the depth values of the points, which are available from the depth

camera. A simple way to compute prevZ is to just pick this average depth and use it in the

next timestep. However this idea is unreliable. The reason is that if our algorithm picks the

wrong plane even once, then prevZ value will store its average depth. Thus, the quantity which

8

we wished to use to stabilise our segmentation will now have the opposite effect.

A better way to compute prevZ is to use a moving average. At every timestep, we perform

the following update parameterized by γ:

prevZ = prevZ × (1− γ) + (Z − value)× γ

Such an update effectively gives us an average of the last few Z-values. Exactly how far back in

time does this average go is decided by the parameter γ. The advantages of using this method

are multiple:

• The update is cheap. We can take the average as far back in time as we please just by

changing γ. There is no need to store the Z-values, thus using lesser space and also being

easier to debug and implement.

• When we use this method, one bad segmentation cannot throw off our average. The

algorithm can still correctly segment a road in the future timesteps.

2.2.4 Bringing it all together

Here is how we use all the components described above.

First we get the three most dominant planes from the pointcloud. Then we compute the Z-value

for each of them. Along with this, we count the number of points in each plane. If this number

is below a certain threshold then we apply a certain fixed penalty to that plane; i.e. we will add

a penalty to that plane’s Z-value. The reasoning is that overly small planes are most likely stray

planes and not the road.

If the Z-values are sufficiently far apart from each other then we are reasonably certain that the

plane with the smallest Z-value is the road. But if that is not the case and the Z-values are very

close together, then we use the prevZ value.

Let α be the smallest Z-value obtained. Now we pick the planes whose Z-value is smaller than

δ × α where δ is a parameter. For these planes we compute the average depth. Finally, we pick

the plane whose average depth is the closest to the prevZ value.

9

Figure : The unrefined algorithm was fluctuating between green part(mountain part) and red

part(actual road part). The described refinement solved the ambiguity.

2.3 Mean Path Detection

We primarily used the pointcloud of the main plane detected above and converted it into RGB

image for Mean Path Segmentation. We used OpenCV to find the mean path using majorly the

following algorithms - MinAreaRect and Principal Component Analysis (PCA). MinAreaRect

bounding rectangle is drawn with minimum area, so it considers the rotation also. Principal

Component Analysis (PCA) is a statistical procedure that extracts the most important features

of a dataset. These two algorithms along with some heuristics are used in concert with each

other to determine mean path, the details of which are given below.

2.3.1 Condition when road occupies major part of Image

We converted the above obtained image into a Binary Image(road is in white and the background

is black) and then checked whether the road occupies a major part of the image. Let total number

of pixels in the image be N . We then count the number of white pixels(N0) and check if the

ratio N0

N is greater than a set threshold. If it is greater, then the drone is given waypoints to

move straight on the road.

Figure: Arrow shows the direction of movement.

10

2.3.2 Next Waypoint Calculation using MinAreaRect

If the above condition is not satisfied then we move to our second approach. Here we computed

the contours of the above image and selected the contour with the maximum area(max area contour)

to remove any unwanted noise. Further processing is now done on the max area contour. We try

to fit a rectangle with the minimum area around the above contour to get the orientation of the

road using the predefined OpenCV function cv::MinAreaRect(). The center of the road is taken

as the center of the rectangle. If the ratio Rectangle Area
max contour Area is greater than a given threshold,

we consider the direction calculated by the minAreaRect which is the forward direction in the

image.

Figure: Blue point is the center of the rectangle and white point represents next waypoint in

image frame.

2.3.3 Next Waypoint Calculation using PCA

If the above condition is not satisfied then we move to the final algorithm which uses PCA

analysis. A key point of PCA is Dimensionality Reduction. Dimensionality Reduction is the

process of reducing the number of the dimensions of the given dataset. PCA takes array of 2D

points and finds the best fitted line. This helps in getting the orientation of the road. So we take

the binary image(road is in white and the background is in black) and store white pixels(road

part) in Points array. Then we apply PCA on Points which gives us two Eigen Vectors in

the direction of best fitted line and perpendicular to it. The center of the road is also calculated

by an OpenCV function, pca analysis. We pick the vector with the larger eigen value as our

drone movement direction. Here another condition check was applied. If the eigen values of both

11

the vectors are approximately equal, it means that we are not able to distinguish between the

two directions of movement. Hence an average of the two Eigen Vectors was used as the final

direction.

Figure: Black line detects the direction of movement of drone in the next timestamp. Pink

point is the center detected by PCA and white point represents next waypoint in image frame.

In both MinAreaRect and PCA method of finding next waypoint, a corrective measure is applied.

If the center detected by any of algorithms is too far from the center of the image (which means

that the drone is at the edge of the road), wavepoints are given such that the drone moves to

the center of the road.

2.4 Prius Detector

The details of the orientation of the ground vehicle are necessary for modulating and fine tuning

the control system. The rectangular top of the ground vehicle is detected, along with its corner

points and centre point. The centre point allows the aerial vehicle to track the ground vehicle

and the orientation of the rectangular box is used to establish a feedback loop to control the

steering of the ground vehicle. The depth image is extracted from the gimbal’s depth camera

and then processed into a single channel gray scale image. Contours are then constructed upon

the gray channel image.

12

Next we used the approach of filtering the raw image on the basis of its RGB value. Gaussian

blur was performed on the image to filter out irregularities. In order to avoid other objects from

disturbing the outcome, we ensured that the number of points in the convex hull of the prius

lied within a certain range, as an additional check. After detecting the prius, we then evaluate

the center of the prius along with center of the line connecting the front wheels in order to get

the orientation of prius.

2.5 UGV Controller

We have used the Pure Pursuit path tracking algorithm for UGV controller. It computes the

steer angle that moves UGV from its current position to reach some look-ahead point in front

of the UGV. The algorithm then moves the look-ahead point on the path based on the current

position of the UGV until the last point of the path is reached. You can think of this as the

UGV constantly chasing a point in front of it. The property look ahead distance decides how far

the UGV would look for the next waypoint.

Look ahead distance property is the main tuning parameter for the controller. The figure below

shows the UGV and the look-ahead point. Note that the actual path does not match the direct

line between way-points, as is evident in this image.

13

The effect of changing this parameter can change how your UGV tracks the path and there are

two major goals: regaining the path and maintaining the path. In order to quickly regain the

path between way-points, a small look ahead distance will be beneficial, as it will cause your

robot to move quickly towards the path. However, as can be seen in the figure below, the robot

overshoots the path and oscillates along the desired path. In order to reduce the oscillations

along the path, a larger look ahead distance can be chosen, however, it might result in larger

curvatures near the corners.

Figure : Small Look-Ahead

Figure : Large Look-Ahead

A sharp change in curvature of the path of UGV with high speeds will cause the rear end to skid.

To overcome the skidding of the UGV at high speeds we have used a PID velocity controller and

made the target speed as a function of steer angle so as to slow down at the turns.

v = max vel − (0.5 ∗ θ)

14

where v is the speed of the UGV and θ is the steer angle in degree. We tried to improve the pure

pursuit model by adding a feedback and a Low pass filter for smoother steer but it lead to more

oscillations, so it was later removed.

15

3 Software Architecture Description

3.1 rqt graph

]

]

3.2 Parameter Files

The parameter files being used are:-

16

3.2.1 segmentation

• params.yaml - camera parameters and transformation matrices

3.2.2 prius detector

• params.yaml - camera parameters, rotation matrices and other general cv parameters

3.3 Nodes

The nodes being run are as follows:-

3.3.1 road seg node

Subscribed topics:-

• /depth camera/rgb/image raw: Gets the raw RGB image from the camera

• /depth camera/depth/points: Gets the pointcloud from the depth camera

Published topics:-

• /image/road seg : Image of the segmented road

• /drone way : The next waypoint in the drone frame

3.3.2 mapping fsm node

Subscribed topics:-

• /drone way : Gets the next waypoint in the drone frame.

• /mavros/local position/odom : Odometry of the drone

• /mavros/home position/home : Odometry of the home position

Published topics:-

• /mavros/setpoint position/local : For publishing waypoints in the ground frame.

17

3.3.3 prius detector

Subscribed topics:-

• /depth camera/depth/points : Gets the pointcloud from the depth camera

• /clock : Simulation timing

• /mavros/local position/odom : Odometry of the drone

Published topics:-

• /prius odom : Publishing the odometry of Prius

• /mavros/setpoint position/local : For publishing waypoints in the ground frame.

• /mavros/setpoint velocity/cmd vel : Providing velocity to the drone in the map frame

3.3.4 controls 18577 1647966555634

Subscribed topics:-

• /prius odom : calcuated odometry of prius

• /clock : Simulation time

• /cmd delta : Calculated steering angle

Published topics:-

• /prius : Publishes the throttle, steer and brake

3.3.5 path tracking 18610 1647966558346

Subscribed topics:-

• /prius odom : Subscribimg the odometry of Prius

• /clock : Simulation time

• /way path : Subscribing mean path

Published topics:-

• /cmd delta : Calculated Steering angle

18

3.3.6 waypoint publisher

Subscribed topics:-

• /clock : Simulation time

Published topics:-

• /waypath : Publishing mean path

19

4 References

• For Takeoff : px4-docs

• Pure Pursuit

• openCV-docs

20

https://docs.px4.io/master/en/ros/mavros_offboard.html
https://www.mathworks.com/help/robotics/ug/pure-pursuit-controller.html
https://docs.opencv.org/3.4/d1/dee/tutorial_introduction_to_pca.html

	Installation and Setup Instructions
	Pre-Installation Assumptions
	Installing Dependencies
	Running the Simulation
	Version Information for Dependencies
	Changes in provided Model Files
	Potential Build and Runtime Issues

	Overall Approach and Algorithm Description
	Autonomous Takeoff
	Road Segmentation
	Average slope computation
	Inclusion of time based filters
	Estimating the previous depth prevZ reliably
	Bringing it all together

	Mean Path Detection
	Condition when road occupies major part of Image
	Next Waypoint Calculation using MinAreaRect
	Next Waypoint Calculation using PCA

	Prius Detector
	UGV Controller

	Software Architecture Description
	rqt_graph
	Parameter Files
	segmentation
	prius_detector

	Nodes
	road_seg_node
	mapping_fsm_node
	prius_detector
	controls_18577_1647966555634
	path_tracking_18610_1647966558346
	waypoint_publisher

	References

